当前位置: 首页 > 最新通知 > 正文
最新通知

欢迎研究生积极选修美国石溪大学Cindy Lee与Robert Armstrong两位教授的暑期课程

2013/06/19点击次数:
美国石溪大学的杰出教授Cindy LeeRobert Armstrong 教授将于2013年短学期到5123导航授课,课程内容及安排如下:
Organic Geochemistry and Carbon Cycle
Instructor: Distinguished Professor Cindy Lee , School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
This course will consist of 8 sessions where topics in organic geochemistry and the carbon cycle will be discussed. Sessions will include an hour of lecture and 40 minutes of discussion of a paper on the topic. Lecture topics will include:
Global carbon cycle; Dissolved organic carbon; Particulate organic carbon and carbon export; Decomposition of organic matter; Preservation of organic matter
Alkenones as biomarkers; Lignins as biomarkers; Black carbon; Other topics may be substituted depending on student interest.
Discussions of papers from the literature will cover the scientific questions being asked in the paper, how the authors approached the problem, whether the results are reasonable, what further research could be done to answer unfinished questions, etc.
The final exam will be a short oral presentation by each student on a topic of their choice.
TA:陈莉/Li Chen  chen_li_1120@163.com 手机/Cell Phone: 18030176232
授课时间:短学期1-5周每星期一和星期四1-2节(8:00-9:40
授课地点:翔安校区周隆泉楼 B3-202
 
Statistics and Experimental Design
Instructor: Professor Robert Armstrong, Marine Sciences Research Center, Stony Brook University, Stony Brook, New York, USA
Progress in quantitative understanding of scientific processes requires three components: (1) quantitative statements of the set of hypotheses that are to be explored (“models”); data sets that are sufficiently complete that they can be used to determine which of the set of models is “best supported” by data; and (3) a systematic way (“statistics”) to allow the models to be compared to one another given the data. Statistics is a powerful tool for deriving maximum information from data, for assessing which competing models best explain observed data, and for summarizing and presenting the results obtained. But to take advantage of this power, data must be gathered in such a way that measurements are “independent” and as free as possible from “confounding factors.”
This course has three major goals: 1) to develop an appreciation for sampling strategies and experimental designs that promote the statistical independence of data and avoid confounding factors; 2) to review the concepts of “standard” statistics: means, variances, least-squares methods (both linear and nonlinear); various statistical distributions (Bernoulli, binomial, Poisson, Normal, lognormal) and their normalization constants; 3) then proceed to more modern statistics based on Bayes’ theorem and likelihood, and requiring computer programming. Examples will include both theoretical exercises and “real world” examples where likelihood methods have been applied to oceanic problems, emphasizing work by the instructor. Methods for plotting data (most notably box plots and nonparametric tests to distinguish them) will also be discussed.
Requirements: class participation; homeworks, where students will be asked to present their results to their fellow students in class to encourage discussion and exchange of ideas; and a final exam.
教学参考书在5123导航图书馆的搜索链接,/index.html
书名:The ecological detective :confronting models with data
作者:Hilborn, R., Mangel, M.
出版社:Princeton University
TA:杜川军/Chuanjun Du cjdu@stu.xmu.edu.cn 手机/Cell Phone: 18050056292
授课时间:短学期1-5周每星期一和星期四第3-4节(10:10-11:50
授课地点:翔安校区周隆泉楼 B3-202