讲座摘要
Physiological Study of Climate Change: Can we Predict “Winners” and “Losers”?
George N. Somero,Hopkins Marine Station of Stanford University
Changes in body temperature affect all aspects of an organism’s physiology (function) including metabolic rate, ability to obtain oxygen, and capacities for movement, reproduction and growth. Therefore, climate change—global warming—poses serious threats to ectothermic species, those organisms whose body temperatures change asenvironmental temperature rises or falls. Physiological studies have numerous contributions to make to our understanding of effects of climate change on individual species and entire ecosystems. Mechanistic analyses can identify physiological systems that set thermal optima and thermal tolerance limits and can elucidate how these optima and limits differ among species. Through this type of comparative physiological analysis it may be possible to make predictions about which species will succeed and which species will fail in a warming world, “winners” and “losers,” respectively. This lecture will focus on two ecosystems: rocky intertidal habitats where large changes in temperature are common, and cold, thermally stable waters of the Southern Ocean in Antarctica. Comparisons of congeneric species (species belonging to a common genus but adapted to different temperatures) of intertidal and subtidal marine ectotherms show that the most heat-adapted species may be threatened the most by further increases in habitat temperature, a seemingly paradoxical finding that also applies to terrestrial ectotherms. Antarctic marine ectotherms are especially threatened by warming because, during their long evolutionary histories at stable, cold temperatures near the freezing point of seawater, these species have lost numerous genes that are needed for function at higher temperatures, including genes for oxygen-transport proteins and for regulatingthe heat-shock response. These physiological studies thus suggest that both polar and tropical ecosystems are especially threatened by global warming.
George N. Somero教授简历
斯坦福大学Hopkins海洋观测站副主任
斯坦福大学Woods环境研究所高级研究员
邮箱:somero@stanford.edu
个人主页:http://www-marine.stanford.edu/somero.html
教育
Ph.D.斯坦福大学生物学1967年
从业经历:
2008-今斯坦福大学Hopkins海洋观测站副主任
2005-今斯坦福大学Woods环境研究所高级研究员
2000-2008斯坦福大学Hopkins海洋观测站主任
1995-今斯坦福大学海洋科学方向冠名讲习教授(David and Lucile Packard Professor)
1991-1995奥瑞根州立大学海洋生物方向冠名讲习教授(Wayne and Gladys Valley Professor)
1991-1995斯克里普斯(Scripps)海洋研究所教授
1984-1989斯克里普斯(Scripps)海洋研究所自然哲学方向冠名讲习教授(John Dove Isaacs Chair)
1983-1989斯克里普斯(Scripps)海洋研究所海洋生物首席科学家
1976-1980斯克里普斯(Scripps)海洋研究所副教授
1970-1976斯克里普斯(Scripps)海洋研究所助理教授
1967-1970英国哥伦比亚大学博士后
荣誉
美国国家科学院院士
美国科学发展促进会会士
担任编委
American Journal of Physiology, Journal of Comparative Physiology, Journal of Experimental, Biology, Comparative Biochemistry and Physiology, Annual Review of Marine Science.
研究兴趣:
1. 主要围绕生物对环境的适应性,努力探索环境因素尤其是温度和干旱等危害,如何程度不同地影响生物体,及反之生物体对这些干扰如何做出反映。
2. 蛋白质是其研究工作中的主要系统。通过蛋白质序列(主要是结构)的适应性变化,记录酶和结构性蛋白质的重要功能性和结构性性状的保留如何得以实现。对蛋白质的研究在模仿蛋白质所存在的细胞内溶解状态中进行。
3. 野外研究关注现实世界中温度对蛋白质系统的影响。如环境温度变化如何影响海洋生物的纬度和深度分布。并通过生理调查,如:心脏的功能等,研究分子水平上热效应的影响。
4. 使用DNA微阵列(基因芯片)技术,监测环境变化(氧气、盐度和温度)引起的基因表达的改变。
代表性论文
1. Somero, G.N. 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine "winners" and "losers." Journal of Expermental Biolology.213: 912-920.
2. Gracey, A.Y., M. Chaney, J. Boomhower, W. Tyburczy, K. Connor and G.N. Somero. 2008. Rhythms of gene expression in a fluctuating intertidal environment.Current Biology.18: 1501-1507.
3. Dong, Y. and G.N. Somero. 2008. Temperature adaptation of cytosolic malate dehydrogenases of limpets (genusLottia): differences in stability and function due to minor changes in sequence correlate with biogeographic and vertical distributions.Journal of Experimental Biololgy.212: 169-177.
4. Dong, Y., L.P. Miller, J. G. Sanders, and G.N. Somero. 2008. Heat-shock protein 70 (Hsp 70) expression in four limpets of the genusLottia: Interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress.Biological Bulletin.215: 173-181.
5. Evans, T. and G.N. Somero. 2008. A microarray-based transcriptomic time-course of hyper- and hypoosmotic signaling events in the euryhaline fishGillichthys mirabilis: osmosenors to effectors.Journal of Experimental Biology.211: 3636-3649.
6. Somero, G.N. 2008.Clifford Ladd Prosser, A Biographical Memoir.National Academy of Sciences, Washington, D.C.
7. Pörtner, H.O., G.N. Somero, and L. Peck. 2007. Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view.Proceedings of the Royal Society of London B - Biological Sciences.362:2233-2258.
8. Podrabsky, J.E., and G.N. Somero. 2007. An inducible 70 kDa-class heat shock protein is constitutively expressed during early development and diapause in annual killifish,Austrofundulus limnaeus.Cell Stress & Chaperones, 12: 199-204.
9. Podrabsky, J.E., J.P. Lopez, T.W.M. Fan, R. Higashi, and G.N. Somero. 2007. Extreme anoxia tolerance in embryos of the annual killifishAustrofundulus limnaeus: Insights from a metabolomics analysis.Journal of Experimental Biology.210: 2253-2266.
10. Braby, C.E., and G.N. Somero. 2006. Ecological gradients and relative abundance of native (Mytilustrossulus) and invasive (M. galloprovincialis) blue mussels in the California hybrid zone.Marine Biology.148: 1249-1262.
11. Fields, P.A., E. Rudomen and G.N. Somero. 2006. Temperature sensitivities of cytosolic malate dehydrogenases from native and invasive species of marine mussels (genusMytilus): sequence-function linkages and correlations with biogeographic distribution.Journal of Experimental Biology.209: 656-677.
12. Braby, C.E., and G.N. Somero. 2006. Following the heart: temperature and salinity effects on heart rate in native and invasive species of blue mussels (genusMytilus).Journal of Experimental Biology.209: 2554-2566.
13. Buckley, B.A., A.Y. Gracey, and G.N. Somero. 2006. The cellular response to heat stress in the gobyGillichthys mirabilis: a cDNA microarray and protein-level analysis.Journal of Experimental Biology.209: 2660-2677.
14. Stenseng, E., C. Braby, and G.N. Somero. 2005. Evolutionary and acclimation-induced variation in the thermal limits of heart function in congeneric marine snails (genusTegula):Implications for vertical zonation.Biological Bulletin.208: 138-144.
15. Podrabsky, J., and G.N. Somero. 2004. Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifishAustrofundulus limnaeus.Journal of Experimental Biology.207: 2237-2254.
16. Hochachka, P.W. and G.N. Somero. 2002.Biochemical adaptation : mechanism and process in physiological evolution.Oxford ;New York : Oxford University Press.
17. Fields, P.A., et al. 2002. Temperature adaptation inGillichthys(Teleost : Gobiidae) A(4)-lactate dehydrogenases: identical primary structures produce subtly different conformations.Journal of Experimental Biology.205(9):1293-1303.
18. Tomanek, L. and G.N. Somero. 2002. Interspecific- and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genusTegula): Implications for regulation of hsp gene expression.Journal of Experimental Biology.205(5):677-685.
19. Kawall, H.G., et al. 2002. Metabolic cold adaptation in Antarctic fishes: evidence from enzymatic activities of brain.Marine Biology.140(2):279-286.
20. Lin, J.-J, et al. 2002. Phylogenetic relationships and biochemical properties of the duplicated cytosolic and mitochondrial isoforms of malate dehydrogenase from a teleost fish,Sphyraena idiastes.Journal of Molecular Evolution.54(1):107-117.
21. Fields, P.A., B.D. Wahlstrand, and G.N. Somero. 2001. Intrinsic versus extrinsic stabilization of enzymes: The interaction of solutes and temperature on A4-lactate dehydrogenase orthologs from warm-adapted and cold-adapted marine fishes.European Journal of Biochemistry.268(16):4497-4505.
22. Stillman, J.H. and G.N. Somero. 2001. A comparative analysis of the evolutionary patterning and mechanistic bases of lactate dehydrogenase thermal stability in porcelain crabs, genusPetrolisthes.Journal of Experimental Biology. 204(4):767-776.
23. Gracey, A.Y., J.V. Troll, and G.N. Somero. 2001. Hypoxia-induced gene expression profiling in the euryoxic fishGillichthys mirabilis.Proceedings of the National Academy of Sciences USA. 98(4):1993-1998.
24. Hofmann, G.E., et al. 2000. Heat-shock protein expression is absent in the Antarctic fishTrematomus bernacchii(family Nototheniidae).Journal of Experimental Biology.203(15):2331-2339.
25. Somero, G.N. 2000. Unity in diversity: A perspective on the methods, contributions, and future of comparative physiology.Annual Review of Physiology.62:927-937.
26. Stillman, J. and G.N. Somero. 2000. A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genusPetrolisthes: Influences of latitude, vertical zonation, acclimation, and phylogeny.Physiological and Biochemical Zoology.73(2):200-208.
27. Tomanek, L., and G.N. Somero. 2000. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (GenusTegula) from different tidal heights.Physiological and Biochemical Zoology.73:249-256.
28. Somero, G.N. 2000. Unity in diversity: A perspective on the methods, contributions, and future of comparative physiology.Annual Review of Physiology.62:927-937.
29. Tomanek, L. and G.N. Somero. 1999. Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genusTegula) from different thermal habitats: Implications for limits of thermotolerance and biogeography.Journal of Experimental Biology.202(21):2925-2936.
30. Fields, P.A. and G.N. Somero. 1998. Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A-4 orthologs of Antarctic notothenoid fishes.Proceedings of the National Academy of Sciences USA.95:11476-11481.
31. Somero, G.N. 1995. Proteins and temperature.Annual Review of Physiology.57:43-68.